
Photorealistic rendering of scenes with
physically-based sky light

Andreas Agvard
Lund University

Fredrik Lanker
Lund University

Supervisor: Tomas Akenine-Möller
Department of Computer Science

Lund University

2005

Abstract

This master thesis presents an application that outputs images of skies that can be used
to produce photorealistic renderings of outdoor scenes. These images are called light
probes. The application is divided into two parts, a real time part and a part where an
actual rendering of a light probe is done. In the real time part the user chooses a time
and position on Earth whereafter an approximation of the skywith these parameters
is visualized. These parameters can then be transferred into the second part where a
high quality light probe of the sky is created. In the latter part, our approach is to make
a physically correct rendering of the sky where both single and multiple scattering of
the light due to particles in the atmosphere are taken into account. The scattering is
computed by using well-established theories developed by Rayleigh and Mie. The
image of the sky is output as a high dynamic range light probe in the RGBE format
created by Ward. This light probe can then be used as a light source when rendering
three dimensional scenes in any renderer supporting light probes and high dynamic
range images.

This thesis also showes examples of two postprocessors thatcan be applied to the
rendered scene, a glare effect and tone mapping. The glare effect is used to simulate
the phenomenon that can be seen as a hazy glow in the area closest to a bright light
source. Tone mapping is used to present high dynamic range images on a monitor with
a limited dynamic gamut.

Sammanfattning

Detta examensarbete presenterar en applikation som beräknar bilder på himlar som
kan användas för att rendera fotorealistiska utomhusscener. Dessa bilder kallas “light
probes”. Applikationen är uppdelad i två delar, en realtidsdel och en del där den
slutgiltiga bilden beräknas. I realtidsdelen väljer användaren tid och plats på Jorden
varefter en approximation av himlen med de valda parametrarna visualiseras i realtid.
Parametrarna kan därefter föras över till applikationens andra del där en högkvalitativ
bild av himlen skapas. I denna andra del försöker vi skapa en fysikaliskt korrekt him-
mel där vi tar hänsyn till ljus som bryts både en och flera gånger på grund av partiklar
i atmosfären. Spridningen på ljuset beräknas med hjälp av deväletablerade teorierna
utformade av Rayleigh och Mie. Bilden på himlen presenterassom en “light probe”
med ett stort dynamiskt omfång som fås genom att använda RGBE-formatet som är
utvecklat av Ward. Denna “light probe” kan sedan användas som en ljuskälla för ren-
dering av tredimensionella scener i något renderarprogramsom stödjer “light probes”
i RGBE-format.

Detta arbete visar också två exempel på hur de färdiga bilderna kan efterbearbetas.
Det ena exemplet är en effekt som simulerar skenet som kan sesi området närmst en
stark ljuskälla. Det andra exemplet är ett exempel på hur mankan presentera bilder
med stor dynamisk spännvidd på en monitor där denna spännvidd är begränsad.

Contents

1 Introduction 3
1.1 Background . 3
1.2 Objective . 3
1.3 Overview . 3

2 HDR images and light probes 3
2.1 Light probes . 4

3 Our model 4

4 Common calculations 5
4.1 Positioning sky elements . 5

4.1.1 Coordinate conversion . 5
4.1.2 Star positions . 5
4.1.3 Sun position . 5
4.1.4 Moon position . 5

5 Real time version 6
5.1 Computing sky light . 6
5.2 The Sun . 6
5.3 The zodiacal light and gegenschein 6

6 Light probe rendering 6
6.1 Sunlight . 6
6.2 Light scattering . 7

6.2.1 Rayleigh scattering . 7
6.2.2 Mie scattering . 8

6.3 Ray marching . 9
6.4 Light probe creation . 11

7 Postprocessing 12
7.1 Glare . 12
7.2 Tone mapping . 13

8 Discussion 14
8.1 Encountered problems and solutions to them 14
8.2 Possible improvements . 15
8.3 Conclusions . 16

A Coordinate conversion 20
A.1 Julian date . 20
A.2 Local mean sidereal time . 20
A.3 Equatorial to horizontal and vice versa 20
A.4 Equatorial to ecliptic and vice versa 21

B Position computations 21
B.1 Sun . 21
B.2 Moon . 22

C Sky light formulas 22

D Color spaces 23

2

1 Introduction

1.1 Background

Since the birth of computer graphics, artists and researchers have tried to create pho-
torealistic images. Such images have then been used in, for example, movies to add
things that could not have been done in real life, games for making them more realistic,
or just for the fun of it.

One way to achieve photorealism is by trying to follow the laws of physics in the
process of creating the imagery. This involves, among otherthings, making physical
models of how the light interacts with different materials and with the particles in the
air. To be able to do these models there is a demand for a way to simulate the source of
the light. The aim for this thesis is to create images of realistic skies that can be used as
light sources when rendering three-dimensional scenes. Bydoing this, photorealistic
images of outdoor scenes can be obtained.

1.2 Objective

Our goal is to fulfill the following objectives:

1. Be able to calculate the correct position of the Sun, the Moon and the stars in the
sky.

2. Be able to compute and, in real time, visualize an approximative sky given any
time and any position on Earth.

3. Be able to render a physically correct sky with both singleand multiple scattering
and to present this as a light probe that can be used to simulate a sky in a 3d scene.

4. Be able to render a simple scene using our light probe.

5. Be able to postprocess the rendered scene to simulate the human vision, e.g.
applying tone mapping and glare effects.

6. If time allows, be able to simulate clouds and use them in our system.

1.3 Overview

This thesis begins with a brief explanation of high dynamic range images (section 2)
and light probes (section 2.1). It then goes on by describingour model (section 3) and
why we chose to do a stand alone application.

Next, section 4 deals with the common calculations that is done in the various parts
of the application. The real time version (section 5) is explained next and after that
the light probe rendering (section 6) and all the different parts of it. In section 7 the
two used postprocessors are explained. The thesis is concluded with a discussion (sec-
tion 8) where encountered problems, possible improvementsand some final thoughts
are presented.

2 HDR images and light probes

In the digital world, colors are usually represented in a 24-bit RGB space, with 8-bits
assigned to each of the three primaries. Consequently, mostavailable monitors can

3

only handle this representation, in the form of sRGB. This means that colors outside
the sRGB gamut cannot be displayed, especially values that are either too dark or too
bright, since the dynamic range is less than 2 orders of magnitudes, compared to human
observers who can distinguish details in a scene spanning over 9 orders of magnitudes.
The sRGB gamut is also lacking a large region of the perceivable colors, most notable
in the blue-green and the violet regions. Hence, the RGB space is not very good at
representing what human observers can see. This is why we need to store our images
in a high dynamic range, or HDR, format.

The most simple way to obtain a HDR format is to use a floating-point color space.
The disadvantage of using floating-point is that it takes up too much space, therefore
many other formats have been invented. One of these formats is the RGBE (Red-
Green-Blue-Exponent) format that was created by Ward for his physically-based ren-
derer, Radiance [15]. The RGBE format uses 32-bit per pixel,8-bits for each of the
primaries and another 8-bits for an exponent, which makes itcover about 76 orders of
magnitudes. This thesis utilize the RGBE format.

2.1 Light probes

A light probe is a high dynamic range image that contains the incident illumination
from a full 360 x 180 degrees, or 4π steradians, to a specific point in space. This
image can then be used in image-based lightning techniques to achieve photorealistic
renderings. One way to create light probes is to acquire a high dynamic range image by
taking a series of images with different exposure settings,of a highly reflective metal
ball. Another way is by doing as we do in this report, physically-based rendering. The
light probes we create are in longitude/latitude format where the longitude is on the
x-axis and is in the range of 0 to 360 degrees. The y-axis represents the latitude and is
in the range of−90 to 90 degrees, where 0 degrees is the horizon. In the early stages
of our application we utilized another common light probe format called the fisheye
lens format. In a fish eye lens image coordinates work like on the unit circle with the
longitude as the angle and the latitude as the distance from the center.

3 Our model

Our system is divided into two parts. We have one part which shows the sky in real time
using OpenGL (for more information on OpenGL, see www.opengl.org). In this part
you can also choose your position, date and time of day. The other part of our system
is where we render a high quality light probe of the sky with the parameters chosen
in the real time part. We have chosen to do a stand alone application that outputs a
light probe of the sky instead of doing a module to be used witha renderer. This has
some disadvantages, for example adding effects that has to do with the position of the
Sun and atmosphere, like aerial perspective, cannot easilybe done. The approach of
doing it as a stand alone application that outputs standard light probe has, however, the
advantage that it can be used with every renderer that supports light probes and high
dynamic range images. Since our goal with this master thesiswere not to implement a
high-end renderer we chose the latter approach.

4

4 Common calculations

This section describes the computations that is required inboth the real time part and
the part that renders light probes.

4.1 Positioning sky elements

An important task for rendering realistic skies is to accuratly position the different
sky objects. Since the Earth and other objects are constantly moving, this has to be
computed for every frame.

4.1.1 Coordinate conversion

To calculate positions we need to be able to convert between different coordinate sys-
tems. In our model we use three systems, the horizontal, the equatorial and the ecliptic
system [8]. The horizontal system has the horizontal plane as its base, this makes it
time and position dependent and thus it cannot be used in for example a star catalog.
We solely use the horizontal system to determine the position that the stars and other
objects should have in our sky. In a star catalog you can use the equatorial coordinate
system which have the equatorial plane as its reference plane. This coordinate system
is independent of both time and the position of the observer.

For the computations we use the eclipitic coordinate systemwhich have the orbital
plane of the Earth, the ecliptic, as its reference plane. This coordinate system is also
time and position independent and can thus be used for position computations.

Formulas for converting between the coordinate systems canbe found in appen-
dix A.

4.1.2 Star positions

We get the position of the stars from The Bright Star Catalogue [5] which contains 9110
entries of stars with a magnitude brighter than 6.5, which corresponds to stars visible
to the naked eye. The position is given in equatorial coordinates which we then convert
to horizontal coordinates and use these to compute the direction of the stars. We do not
take the distance to the stars into account since we do not need it for our calculations.
For example the brightness of a star is calculated from the apparent magnitude of the
star where the distance is not relevant.

4.1.3 Sun position

The position of the Sun is computed in ecliptic coordinates by the use of formulas in
appendix B.1. These formulas do not compensate for the smallfluctuation in the Sun’s
position. Just like for the star calculations we transform the ecliptic coordinates into
horizontal coordinates and use these to find the direction ofthe Sun.

4.1.4 Moon position

We compute the Moon position in a similar way as we do for the Sun. The formulas
can be found in appendix B.2. A major difference to the Sun formulas is that the Moon
needs more corrective terms to compensate for the perturbation caused by the Sun.

5

5 Real time version

The real time version is implemented using a hemisphere, a sky dome, where the color
of the vertices are set to our computed sky color. The stars are blended with the sky
dome and the brightness of a star is set according to its visual magnitude, which we get
from [5]. The Moon is modeled as a sphere with a texture created from a photograph
of the real Moon. The Moon is illuminated by a light positioned at the center of the
Sun, creating the different phases.

An example of the approximation in real time version can be seen in figure 16,
where an approximation of the sky at longitude 2 degrees eastand latitude 38 degrees
north at 1 pm on January 1, 2005 is shown.

5.1 Computing sky light

The sky light consist of many components, most notable is, ofcourse, the Sun. We use
Preetham et al.’s [10] formulas for computing the sky light.The sky color in their model
depends on two variables, turbidity and the angle between the Sun and zenith. Turbidity
is the ratio of the vertical optical thickness of the haze particles and molecules to the
vertical optical thickness of the atmosphere with only molecules. Common values for
turbidity are in the range 1 to 64, where 1 is pure air and 64 light fog.

By computing the sky spectral radiance for a number of different Sun positions
and turbidities and then fit these to a parametric function Preetham et al. get formulas
for the spectral radiance. These formulas for computing skylight can be found in
appendix C.

5.2 The Sun

The Sun in the real time version is created by multiplying an exponential function,fM ,
that tries to mimic the brightness of the Sun, to the sky lightpreviously calculated. The
following function is used:

fM = 1 + ec(cos γ−1) (1)

wherec is a constant specifying the size of the Sun, higher values gives a smaller Sun.
γ is the angle to the Sun.

5.3 The zodiacal light and gegenschein

The zodiacal light and gegenschein are two faint light phenomena caused by interplan-
etary dust near the plane of the ecliptic reflecting the sunlight. This phenomena can
be seen above the rising or setting Sun (zodiacal light) or opposite the Sun (gegen-
schein) [8]. To simulate zodiacal light and gegenschein in our model we use a table of
measured values [12]. For each vertex in the sky dome we convert its coordinate from
horizon to ecliptic coordinates and use these to make a bilinear look up in the table.

6 Light probe rendering

6.1 Sunlight

The primary source for light in a sky is the Sun, therefore thesunlight is of great
importance when rendering a sky. The sunlight consist of many different wavelengths,

6

all with different intensity. Since we aim to produce color pictures we must somehow
estimate the intensity for each of the wavelength we use. Oneway to approximate
the intensity curve from the Sun is by considering it as a black body radiator and use
Planck’s Radiation Formula for calculating the intensities. This gives a fairly accurate
approximation and can easily be computed. However, an even faster and more precise
way to compute the intensities is to use a look up table of measured values. We use a
table where the intensity is measured for every nanometer from 300 to 830 nm [17].

A comparison of the two different approaches can be seen in figure 1.

300 350 400 450 500 550 600 650 700 750 800
Wavelength (nm)

In
te

ns
ity

Figure 1: Radiation from a black body (dotted curve) and measured values from the
Sun.

6.2 Light scattering

Although it seems like the air is totally empty, it is crowdedwith small, small particles
causing the light to scatter. These particles makes up the atmosphere and without them
the sky would be pitch black even in the middle of the day and the Sun would not appear
larger than the Moon. There are two common models for describing this scattering, one
for large particles, Mie scattering, and another for small particles, Rayleigh scattering.
The scattering is described with phase functions which are probability functions that
determines the probability for a ray to scatter in a certain direction. Both types of
scattering have also a scattering coefficient,σr for Rayleigh andσm for Mie, which
specifies the probability for the light to scatter, and an albedo,Λ which specifies the
probability for the light to be absorbed.

6.2.1 Rayleigh scattering

Lord Rayleigh III gave in 1871, as part of his scattering theory, the first correct expla-
nation of why the sky is blue. This is due to the scattering of light in particles smaller
than about one tenth of the wavelength of the light. Rayleighdiscovered that the wave-
lengths in the blue end of the visible spectrum, short wavelengths, are scattered and
absorbed much more than the ones in the red end, long wavelengths. This explains

7

why the day sky is blue while sunsets have more of a yellow to red color. During the
day short wavelengths scatter more which gives the sky it’s blue color, but in the morn-
ing and the evening light has to pass through a much thicker layer of atmosphere which
absorbs much of the blue wavelengths.

The Rayleigh scattering is described by the phase function in equation (2). See
figure 2 for a plot of the function. Rayleigh’s phase functionassumes that the air
molecules are spherical objects, which they are not. In equation (3) the molecular
anisotropy has been taken into account [6].

β(α) =
3

4
(1 + cos2α) (2)

β′(α) = 0.7629(1 + 0.9324 cos2α) (3)

30

210

60

240

90

270

120

300

150

330

180 0

Figure 2: The phase function for Rayleigh scattering.

The scattering coefficient for Rayleigh is:

σr =
8π3(n2 − 1)2

3Nλ4
(4)

whereN is the molecular number density of air,n its refractive index andλ the wave-
length of the light. As can be seen,σr is proportional to1/λ4, this explains why blue
light is scattered more than red.

6.2.2 Mie scattering

When light scatters in particles with a size larger than a wavelength, Mie scattering
predominate. This sort of scattering is much less wavelength dependant than Rayleigh

8

scattering, making the medium appear white, which is evident in for example clouds.
Mie scattering also affects the appearance of the Sun. Whilein reality the size of the
Sun when watched from the Earth is almost the same as the size of the Moon, Mie
scattering scatters the sunlight spreading its rays and making it appear larger. As can
be seen in the phase function in figure 3, the forward scattering dominate. This is
intensified when the particles becomes larger.

The phase function for Mie scattering is often approximatedby combining Henyey-
Greenstein functions with different variables. The Henyey- Greenstein function is:

PHG =
1 − g2

(1 + g2 − 2g cos θ)3/2
(5)

whereg is the asymmetry factor andθ the scattering angle. The asymmetry factor
determines the amount of back or forward scattering, depending on the sign. We use a
g that is very close to one, which means that forward scattering predominates.

30

210

60

240

90

270

120

300

150

330

180 0

Figure 3: The phase function for Mie scattering.

The scattering coefficient for Mie scattering is much harderto calculate than for
Rayleigh, therefore we estimate it with a function proportional toλ−0.84.

6.3 Ray marching

The actual rendering of the light probes in done with a technique known as ray tracing,
or more specific, ray marching. In ray tracing, a ray is emitted from the viewpoint
towards a point on the focal plane, which corresponds to a pixel on the image plane.
The ray is then traced into the scene, interacting with the objects in the scene and its
materials until it hits a light source or the background. Thecontributed color from that
particular ray is then calculated and the pixel on the image plane is set accordingly.

In order to render scenes containing participating media, e.g. fog or as in this case
the atmosphere, the volume rendering equation (equation (6)) must be solved:

9

L(x, ~w) =

∫ s

0

e−τ(x,x′)σa(x′)Le(x
′) dx′+

∫ s

0

e−τ(x,x′)σs(x
′)

∫

Ω4π

p(x′, ~w′, ~w)Li(x
′, ~w′) d~w′dx′+

e−τ(x,x+s~w)L(x + s~w, ~w)

(6)

whereτ(x, x′) is the optical depth and is given by:

τ(x, x′) =

∫ x′

x

σt(t) dt. (7)

For an explanation of the other symbols used in equation (6),see table 1.
Equation (6) can normally only be solved for a scene by using numerical integra-

tion. Ray marching is a method for doing numerical integration by taking small steps
through the medium and making simplifying assumptions within the segment consid-
ered. Each of these segments is assumed to be homogeneous andthe incoming light is
assumed to be constant. In each of the segments the direct illumination (from the Sun)
is computed and attenuated according to the distance the light have traveled through the
medium. This is determined by the extinction coefficient,σt. The extinction coefficient
at heighth is:

σt = σ0
t e−

h

T (8)

whereσ0
t is the value of the coefficient at the Earth’s surface andT a scale height

which is 8.4 km. Instead of using only the height of the samplepoint in the calculation
of the attenuation of the extinction coefficient, Simpson’srule is used to find an average
attenuation for the whole segment.

In our model we use the following numerical approximation ofequation (6):

Ln+1(x, ~w) = Lsun(x, ~wsun
′)p(x, ~wsun

′, ~w)σs(x)∆x+

N
∑

l

Ll(x, ~wl
′)p(x, ~wl

′, ~w)σs(x)∆x+

e−σt∆xLn(x + ~w∆x, ~w)

(9)

where the symbols are as explained in table 1.
The center of each segment is our sample point. We find this point by adding a

small random length,∆x, to our last sample point,x, in the direction of the ray.∆x is
computed as:

∆x = −
log ξ

σt(x)
, (10)

whereξ ∈]0 : 1[is a uniformly distributed random number.
To compute the contribution of light scattered more than once, multiple scattering,

one has to consider light reaching the segment from all directions, not only from the

10

Sun. This is made numerically by randomizing a number of raysfrom the segment
using Rayleigh distribution. Multiple Mie scattering is not considered since it makes
a small contribution and introduces a vast amount of errors.Since the Rayleigh phase
function cannot be inverted, a lookup table has been constructed to aid in the random
sampling of scattering rays. For each of these sampling raysthe procedure has to be
repeated which is why multiple scattering is so time consuming.

The difference between images rendered using only single scattering and images
using multiple scattering can be seen in figures 14 and 15. Thesingle scattering images
lacks some of the lighter blue color that can be seen in the multiple scattering images.
The multiple scattering images are obviously more physically correct but they also are
much more time consuming to render.

An irradiance caching system has also been implemented inspired by, but not very
similay to, Ward’s irradiance cache [16]. This cache is usedto selectively choose which
pixels to render and which to interpolate from previous cached values. More samples
are taken in areas where radiance changes rapidly. To determine if a pixel should
be rendered, an approximative error between close pixels iscomputed using the real
time rendered image. If this error exceeds a user specified error tolerance the pixel is
rendered otherwise it is interpolated. Figures 11, 12 and 13shows the result of using
different amounts of error tolerance.

For more on ray marching, see [7].

x position
x′ position of incoming light
~w direction
~w′ direction of incoming radiance
d~w differential solid angle
L radiance
L(x, ~w) radiance atx in direction~w
L(x, ~w′) incident radiance atx from direction~w′

Ll(x, ~w′) incident radiance from light sourcel atx from direction~w′

Lsun(x, ~w′) incident radiance from the sun atx from direction~w′

Ln incident radiance from recursive ray marching step
Le emitted radiance
Lr reflected radiance
Li incident radiance
σa total absorption coefficient
σs total scattering coefficient
σt total extinction coefficient
p(x′, ~w′, ~w) probability of radiance entering pointx′ from

direction~w′ leaving in direction~w

Table 1: Explanation of used symbols (from [7]).

6.4 Light probe creation

As mentioned before, we will create light probes of the sky inthe longitude/latitude
format which have longitude on the x-axis and latitude on they-axis. The longitude
will be, as expected, in the range of 0 to 360 degrees. As a person standing on the

11

ground only sees 90 degrees vertically, assuming that the ground is an infinite plane,
we only render 90 degrees instead of 180. This does normally not cause any problems
since the vast majority of the scenes that will be using the light probe will only use the
upper 90 degrees — you rarely see the sky below the horizon.

For every pixel in the light probe image, we compute the direction of incoming light
for the longitude and the latitude of the pixel. Using the above method, the incoming
radiance, i.e. the color of the pixel, can be calculated.

An example of a light probe created by our application can be seen in figure 17.

7 Postprocessing

7.1 Glare

Glare is a phenomenon that can be seen around bright light sources, most noticeable
in dark surroundings. It manifests itself by the hazy glow inthe area closest to the
light, the streaks that seems to emanate from the center of the light, and the series of
concentric colored rings around the source, also known as the lenticular halo. These
effects gives an impression of greater brightness and are all primarily caused by the
interaction of light rays with the physiology of the human eye. The glare effect is
implemented according to Spencer et al.’s physically-based glare effect [13].

Three different point spread functions (PSF) are used basedon the state of the
viewer. These states are photopic (day vision), mesopic (mixed night and day vision)
and scotopic (night vision). The PSF for the eye is made from three functions,f0(θ),
f1(θ) andf2(θ), whereθ is the angle in degrees between a point in the filter and the
glare source.f0(θ) represents the unscattered component,f1(θ) dominates for non-
zeroθ less than one degrees andf2(θ) dominates for angles above one degree. The
functions are:

f0(θ) = 2.61 × 106e−(θ

0.02
)2 (11)

f1(θ) =
20.91

(θ + 0.02)3
(12)

f2(θ) =
72.37

(θ + 0.02)2
. (13)

The normalized PSF for the photopic state is then computed as:

Pp(θ) = 0.384f0(θ)+

0.478f1(θ)+

0.138f2(θ) (14)

where the subscriptp is for photopic.
The PSF for mesopic and scotopic is somewhat more complex to calculate, a lentic-

ular halo has to be added. For this, another PSF is constructed:

f3(θ, λ) = 436.9
568

λ
e−(θ−3 λ

568
)2 (15)

whereλ is the wavelength. The normalized PSF for a observer whose pupil is large but

12

whose cones are still active, a mesopic observer, is:

Pm(θ, λ) = 0.368f0(θ)+

0.478f1(θ)+

0.138f2(θ)+

0.016f3(θ). (16)

Finally, the PSF for a scotopic observer:

Ps(θ, λ) = 0.282f0(θ)+

0.478f1(θ)+

0.207f2(θ)+

0.033f3(θ). (17)

The filters still lacking the streaks that seems to emanate from the center of the glare
source. To add these, two images are drawn with random lines of random intensity in
the range[0, 1]. The resulting images are then multiplied by the original point spread
functions, one of the images withf1(θ) andf2(θ) and the other withf3(θ), resulting
in a complete filter. An example of a filter can be seen in figure 4, showing the filter
for the scotopic state.

Figure 4: The glare PSF for scotopic.

The filter is only applied to pixels above a certain thresholdset by the user. The
filter is centered over each of the pixels above the thresholdand then applied to them
and the surrounding pixels. The width and height of the filtershould ideally be twice
the width and height of the input image, but since much time can be saved by making
it smaller, the user can decide its size.

7.2 Tone mapping

In order to present high dynamic range images on a monitor with a limited dynamic
gamut, colors in the images have to be mapped to colors that the monitor can handle.
This is called tone mapping [14]. Tone mappers are normally constructed in such a way
that the output is as close as possible to what the human vision would produce. In our
images we have dynamic ranges of up to1 : 1000000 and very intense brightness
produced by the Sun. Therefore we need a tone mapper powerfulenough to map

13

brightness to monitor values without loosing color or contrast. The research on tone
mappers have rendered a large amount of different algorithms. Three of them were
chosen to be implemented:

Linear tone mapping is the simplest tone mapper. Colors over a specific value in the
input image are clamped and then linearly rescaled to fit the color range of the
monitor.

Logarithmic tone mapping is a somewhat better method than linear mapping. Colors
are still clamped, but logarithmically rescaled. This produces a brighter image,
which resembles more to the human visual system.

Exposure tone mapping [4] is the tone mapper most used in our system. It uses the
formula1 − e−color× exposure, whereexposure is a value that can be changed
by the user. The exposure tone mapper is constructed to resemble the process
involved in photographing, where the amount of chemicals onthe film decrease
exponentially when its exposed to light. This makes the brightness inverse expo-
nentially increasing.

We have tested two other more complex tone mappers, specifically Reinhard’s [11]
and Ashikhmin’s [1], but came to the conclusion that exposure tone mapping renders
the best results for our needs. Examples of the different tone mappers can be seen in
figures 5, 6, 7 and 8.

Figure 5: Image tone mapped with a simply logarithmic tone mapper. This produces a
quite good result, but bright pixels are clamped leaving large areas white.

8 Discussion

8.1 Encountered problems and solutions to them

We first tried to render the sky images by using photon tracingto simulate multiple
scattering. However, this approach was not successful as can be seen in figure 9. There-
fore, this idea was abandoned and instead a path marching method were chosen for the
rendering of the sky images.

We had some problems on how to make the Sun look somewhat realistic in the
real time version. By using only the formulas for the sky light listed in appendix C
the Sun were not distinct enough. This problem was solved by finding a function (see
equation (1)) that was multiplied with the calculated sky light.

14

Figure 6: Image tone mapped with Ashikhmin’s tonemapper. Ashikhmin’s tonemapper
can saturate colors as can be seen in this image, it also seemsto introduce a gray tone
to the image making colors look faded.

Figure 7: Image tone mapped with Reinhard’s tone mapper. Reinhard’s tone mapper
also introduces some distortion in the colors but at least itdoes not introduce as much
gray tone as Ashikhmin’s tone mapper.

8.2 Possible improvements

A way to make the sky look more realistic is to add clouds. Thisis however a rather
difficult task. Some attempts were made to implement clouds (see figure 10). This
was done by implementing a non-real time version of “A Simple, Efficient Method for
Realistic Animation of Clouds” by Dobashi et al. [3], but dueto lack of time we chose
not to look into it further.

The night sky is another area that could be improved further.The Moon is currently
not rotated correctly. This has been neglected because the Moon is represented by such
a small number of pixels making it very hard to distinguish details in the texture of
the Moon. To make the night sky detailed to a greater extent, more planets could be
added. However, since they would be represented by an even smaller amount of pixels,
it would be hard to differentiate them from the stars.

Another possible enhancement would be to add a better tone mapper. By making a
tone mapper that was specifically designed to be used with skyimages, a better result
would probably be possible. However, designing such a tone mapper would be beyond
the scope of this thesis.

15

Figure 8: Image tone mapped with exposure tone mapper. Produces good, non-
saturated images with much color preserved and still no visible clamped white areas.

The light probes produced do not completely follow the standard of light probes;
the y-axis only represent 90 instead of 180 degrees. Since you never see below the
horizon this should not be a great drawback. However, it could cause some problems
with rendering programs that only supports light probes where the y-axis represents
180 degrees. The problem could be solved by making a copy of a light probe, flip it
horizontally and stitch it together with the original.

Figure 9: The photon tracing approach, image is in fisheye lens format.

8.3 Conclusions

The objectives of this thesis were:

1. Be able to calculate the correct position of the Sun, the Moon and the stars in the
sky.

2. Be able to compute and, in real time, visualize an approximative sky given any
time and any position on Earth.

16

Figure 10: Our attempt with clouds.

3. Be able to render a physically correct sky with both singleand multiple scattering
and to present this as a light probe that can be used to simulate a sky in a 3d scene.

4. Be able to render a simple scene using our light probe.

5. Be able to postprocess the rendered scene to simulate the human vision, e.g.
applying tone mapping and glare effects.

6. If time allows, be able to simulate clouds and use them in our system.

Most of these goals have been fulfilled. The position of the objects in the sky; the Sun,
the Moon and the stars, are accurate although the rotation ofthe Moon is left out. A
real time version is implemented where an approximative skyis visualized at any given
time and position. Physically correct light probe images ofthe sky can be computed
in both a single and a multiple scattering mode and these images can subsequently be
used as light sources in 3d scenes to give an accurate and physically correct outdoor
lighting. Both tone mapping and glare effects has been implemented. Finally, attempts
to implement clouds has been made although they have not beenincorporated into the
final application.

A complete scene rendered with one of our light probes can be seen in figure 18.
By tweaking parameters some not so realistic images, that could be useful for non-

photorealistic renderings, can be achieved. Two examples of this is in figure 19 and 20
where the first image is a somewhat more “dramatic” sunset andthe latter one a totally
unrealistic sky.

17

References

[1] A SHIKHMIN , M. A tone mapping algorithm for high contrast images. InEGRW
’02: Proceedings of the 13th Eurographics workshop on Rendering (2002), Eu-
rographics Association, pp. 145–156.

[2] brucelindbloom.com.
http://www.brucelindbloom.com accessed January 16, 2005.

[3] DOBASHI, Y., KANEDA , K., YAMASHITA , H., OKITA , T., AND NISHITA , T.
A simple, efficient method for realistic animation of clouds. In SIGGRAPH ’00:
Proceedings of the 27th annual conference on Computer graphics and interactive
techniques (New York, NY, USA, 2000), ACM Press/Addison-Wesley Publishing
Co., pp. 19–28.

[4] Exposure.
http://freespace.virgin.net/hugo.elias/graphics/x_posure.htm accessed January
16, 2005.

[5] HOFFLEIT, D., AND WARREN, W. The Bright Star Catalogue, 5th ed. Yale
University Observatory, 1991.

[6] I RWIN, J. Full-Spectral Rendering of the Earth’s Atmosphere using a Physical
Model of Rayleigh Scattering. InProceedings of the 14th Annual Eurographics
UK Conference (1996).

[7] JENSEN, H. W. Realistic image synthesis using photon mapping. A. K. Peters,
Ltd., 2001.

[8] K ARTTUNEN, H., KRÖGER, P., OJA, H., POUTANEN, M., AND DONNER, K. J.
Fundamental Astronomy, fourth edition. Springer-Verlag, 2003.

[9] PEREZ, R., SEALS, R., AND M ICHALSKY, J. All-weather model for sky lumi-
nance distribution-preliminary configuration and validation. Solar Energy 50, 3
(1993), 235–245.

[10] PREETHAM, A. J., SHIRLEY, P., AND SMITS, B. A practical analytic model
for daylight. In SIGGRAPH ’99: Proceedings of the 26th annual conference
on Computer graphics and interactive techniques (1999), ACM Press/Addison-
Wesley Publishing Co., pp. 91–100.

[11] REINHARD, E., STARK , M., SHIRLEY, P., AND FERWERDA, J. Photographic
tone reproduction for digital images. InSIGGRAPH ’02: Proceedings of the
29th annual conference on Computer graphics and interactive techniques (2002),
ACM Press, pp. 267–276.

[12] ROACH, F., AND GORDON, J. The Light of the Night Sky. D. Reidel Publ. Co.,
1973.

[13] SPENCER, G., SHIRLEY, P., ZIMMERMAN , K., AND GREENBERG, D. P.
Physically-based glare effects for digital images. InSIGGRAPH ’95: Proceed-
ings of the 22nd annual conference on Computer graphics and interactive tech-
niques (1995), ACM Press, pp. 325–334.

18

[14] TUMBLIN , J., AND RUSHMEIER, H. Tone reproduction for realistic images.
IEEE Comput. Graph. Appl. 13, 6 (1993), 42–48.

[15] WALTER, B. RGBE File Format.
http://www.graphics.cornell.edu/ bjw/rgbe.html accessed May 12, 2005.

[16] WARD, G. J., RUBINSTEIN, F. M., AND CLEAR, R. D. A ray tracing solution
for diffuse interreflection. InSIGGRAPH ’88: Proceedings of the 15th annual
conference on Computer graphics and interactive techniques (New York, NY,
USA, 1988), ACM Press, pp. 85–92.

[17] Wehrli 1985 AM0 Spectrum.
http://rredc.nrel.gov/solar/spectra/am0/wehrli1985.new.html accessed January
16, 2005.

19

A Coordinate conversion

A.1 Julian date

The Julian date is the time in decimal days since noon on January 1,−4712 (i.e. Janu-
ary 1, 4713 BC). In this appendix we use a variablejd which is the number of decimal
days since noon on January 1, 2000. We compute this by calculate the current Julian
date and then subtract the number of days between year−4712 and year 2000. For
Y > 1582 this is given by:

jd = 1720996.5− ⌊Y ′/100⌋+ ⌊Y ′/400⌋+ ⌊365.25Y ′⌋ + ⌊30.6001(M ′ + 1)⌋

+ D + (H + (M + S/60)/60)/24− 2451545

(18)

Y ′ =

{

Y − 1, M = 1 or M = 2
Y, otherwise

(19)

M ′ =

{

M + 12, M = 1 or M = 2
M, otherwise .

(20)

A.2 Local mean sidereal time

To calculate local mean sidereal time we first calculate Greenwich mean sidereal time
and add the longitude of the observer. The result in hours is as follows:

GMST = 18.69737375 + 24.06570982jd (21)

LMST = GMST + λh (22)

whereλh is compensation for the time zone.

A.3 Equatorial to horizontal and vice versa

To convert between the equatorial right ascension (α) and declination (δ) and the hor-
izontal altitude (a) and azimuth (A) we also have to compute the hour angle (h) by
using the local mean sidereal time (LMST , see A.2).

h = LMST − α. (23)

The horizontal coordinates are then computed by using the following equations:

sin A cos a = sin h cos δ (24)

cosA cos a = cosh cos δ sin φ − sin δ cosφ (25)

sin a = cosh cos δ cosφ + sin δ sin φ, (26)

whereφ is the altitude of the celestial pole, or the latitude of the observer.
To convert from the horizontal system to the equatorial system these equations

should be satisfied:

sin h cos δ = sin A cos a (27)

cosh cos δ = cosA cos a sinφ + sin a cosφ (28)

sin δ = − cosA cos a cosφ + sina sin φ . (29)

20

A.4 Equatorial to ecliptic and vice versa

The conversion between the equatorial right ascension (α) and declination (δ) and the
ecliptic longitude (λ) and latitude (β) is achieved by satisfying the following equations:

sinλ cos β = sin δ sin ǫ + cos δ cos ǫ sinα (30)

cosλ cos β = cos δ cosα (31)

sin β = sin δ cos ǫ − cos δ sin ǫ sinα (32)

sin α cos δ = − sinβ sin ǫ + cosβ cos ǫ sinλ (33)

cosα cos δ = cos δ cosβ (34)

sin δ = sinβ cos ǫ + cosβ sin ǫ sinλ . (35)

The angleǫ in these equations is the obliquity of the ecliptic, or in other words, the
angle between the equatorial and ecliptic planes.

B Position computations

B.1 Sun

The position of the Sun is calculated in ecliptic coordinates (λ, β). To know where to
put the Sun in our model, we also compute the distance in kilometers to the Sun,r.

λ = 4.895048 + 0.0172027913jd + (0.033417− 2.299794661 · 10−9jd) sin(M)

+ 0.000351 sin(2M)

r = 149600000(1.000140− (0.016708− 1.149897331 · 10−9jd) cos(M)

− 0.000141 cos(2M))

(36)

whereM = 6.24 + 0.0172019713jd. Since the Sun is in the ecliptic plane we get
β = 0.

21

B.2 Moon

To compute the ecliptic coordinates (λ, β) of the Moon and the distance Moon to Earth
we use the following formulas:

l′ = 3.8104 + 0.2299715017jd

m = 6.2300 + 0.0172019685jd

f = 1.6280 + 0.2308957235jd

m′ = 2.3554 + 0.2280271348jd

d = 5.1985 + 0.2127687118jd

λ = l′ + 0.1098 sin(m′) + 0.0222 sin(2d − m′) + 0.0115 sin(2d)

+ 0.0037 sin(2m′) − 0.0032 sin(m) − 0.0020 sin(2f)

+ 0.0010 sin(2d − 2m′) + 0.0010 sin(2d − m − m′)

+ 0.0009 sin(2d + m′) + 0.0008 sin(2d − m) + 0.0007 sin(m′ − m)

− 0.0006 sin(d) − 0.0005 sin(m + m′)

β = 0.0895 sin(f) + 0.0049 sin(m′ + f) + 0.0048 sin(m′ − f)

+ 0.0030 sin(2d − f) + 0.0010 sin(2d + f − m′)

+ 0.0008 sin(2d − f − m′) + 0.0006 sin(2d + f)

π′ = 0.016593 + 0.000904 cos(m′) + 0.000166 cos(2d − m′)

+ 0.000137 cos(2d) + 0.000049 cos(2m′) + 0.000015 cos(2d + m′)

+ 0.000009 cos(2d − m)

(37)

The distance is1/π′ and the unit is Earth radii. By computing the angle between the
Moon-Earth vector and the Moon-Sun vector, the current phase can be determined.

C Sky light formulas

In Perez et al.’s [9] model, the luminance distribution is given by:

F(θ, γ) = (1 + AeB/ cos θ)(1 + CeDγ + E cos2γ) (38)

where A, B, C, D and E are parameters that each has a specific physical effect.γ is the
angle between a point on the sky dome and the Sun andθ is the angle between zenith
and a point on the sky dome.

The luminance,Y and the chromaticity,x andy, for an arbitrary point on the sky
dome is computed as:

Y = Yz
F(θ, γ)

F(0, θs)
(39)

x = xz
F(θ, γ)

F(0, θs)
(40)

y = yz
F(θ, γ)

F(0, θs)
(41)

whereθs is the angle between the Sun and zenith.Yz , xz andyz is the zenith values

22

given by:

Yz = (4.0453T − 4.9710) tanχ − 0.2155T + 2.4192 (42)

χ = (
4

9
−

T

120
)(π − 2θs) (43)

xz =
[

T 2 T 1
]





0.0017 −0.0037 0.0021 0.000
−0.0290 0.0638 −0.0320 0.0039

0.1169 −0.2120 0.0605 0.2589













θ3
s

θ2
s

θs

1









(44)

yz =
[

T 2 T 1
]





0.0028 −0.0061 0.0032 0.000
−0.0421 0.0897 −0.0415 0.0052

0.1535 −0.2676 0.0667 0.2669













θ3
s

θ2
s

θs

1









(45)

whereT is the turbidity.

D Color spaces

In our system we use different color spaces for different tasks. The spaces we use
is RGB, xyY and CIEXYZ. Since most computer monitors uses RGB(or more spe-
cific sRGB) we need to be able to convert between these color spaces. The following
formulas are used for conversion [2]:

sRGB → XYZ

[

X Y Z
]

=
[

r g b
] [

M
]

(46)

r =

{

R/12.92, R ≤ 0.04045
((R + 0.055)/1.055)2.4, R > 0.04045

(47)

g =

{

G/12.92, G ≤ 0.04045
((G + 0.055)/1.055)2.4, G > 0.04045

(48)

b =

{

B/12.92, B ≤ 0.04045
((B + 0.055)/1.055)2.4, B > 0.04045

(49)

M =





0.412424 0.212656 0.0193324
0.357579 0.715158 0.119193
0.180464 0.0721856 0.950444



 (50)

whereX, Y, Z, R, G andB are in the range[0, 1].

XYZ → sRGB

[

r g b
]

=
[

X Y Z
] [

M
]

(51)

23

M =





3.24071 −0.969258 0.0556352
−1.53726 1.87599 −0.203996
−0.498571 0.0415557 1.05707



 (52)

R =

{

12.92 r, r ≤ 0.0031308

1.055 r1/2.4 − 0.055, r > 0.0031308
(53)

G =

{

12.92 g, g ≤ 0.0031308
1.055 g1/2.4 − 0.055, g > 0.0031308

(54)

B =

{

12.92 b, b ≤ 0.0031308

1.055 b1/2.4 − 0.055, b > 0.0031308
(55)

whereX, Y, Z, R, G andB are in the range[0, 1].

XYZ → xyY

W = X + Y + Z (56)

xxyY = X/W (57)

yxyY = Y/W (58)

YxyY = Y (59)

xyY → XYZ

XXY Z = x
Y

y
(60)

YXY Z = Y (61)

ZXY Z = (1 − x − y)
Y

y
(62)

24

Figure 11: Sample points and rendered image using a 20 % cacheerror tolerance.

Figure 12: Sample points and rendered image using a 5 % cache error tolerance.

Figure 13: Sample points and rendered image using a 1 % cache error tolerance.

25

Figure 14: A rendered version with only single scattering.

Figure 15: A rendered version with both single and multiple scattering. As can be seen,
the multiple scattering makes the sky more blue.

Figure 16: Approximation from real time version.

Figure 17: The rendered version of figure 16.

26

Figure 18: A scene rendered with one of our light probes. Glare effect is also added.

Figure 19: A somewhat more dramatic sunset that is the resultof changing some para-
meters.

Figure 20: Example of a totally unrealistic sky that can be achieved by tweaking some
parameters. A glare effect is also added.

27

